DecisionTreeClassifier() : 분할과 가지치기 과정을 반복 트리 기반의 분류 규칙을 만든다.
from sklearn.tree import DecisionTreeClassifier
>>> classifier = DecisionTreeClassifier(random_state=1)
>>> classifier.fit(X_train, y_train)
>>> y_pred = classifier.predict(X_test)
>>> y_pred
array([0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0], dtype=int64)
from sklearn.metrics import confusion_matrix, accuracy_score
>>> confusion_matrix(y_test, y_pred)
array([[50, 8],
[ 8, 34]], dtype=int64)
>>> accuracy_score(y_test, y_pred)
0.84
'인공지능 > Machine Learning' 카테고리의 다른 글
[Machine Learning] 계층적 군집화 Hierarchical Clustering (0) | 2024.04.16 |
---|---|
[Machine Learning] K- 평균 군집 K-Means Clustering (0) | 2024.04.16 |
[Machine Learning] 분류 예측 Support Vector Machine (SVM) (0) | 2024.04.15 |
[Machine Learning] 분류 예측 K-NN (0) | 2024.04.15 |
[Machine Learning] 성능 측정 confusion_matrix(), accuracy_score(), classification_report() (1) | 2024.04.15 |