KNeighborsClassifier() : 가장 가까운 n개 데이터(이웃데이터)로 분류
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors= n)
# n_neighbors= 몇개의 데이터로 분석할건지 입력, 디폴트값은 5
>>> classifier = KNeighborsClassifier(n_neighbors=7)
>>> classifier.fit(X_train, y_train)
>>> y_pred = classifier.predict(X_test)
>>> y_pred
array([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0], dtype=int64)
from sklearn.metrics import confusion_matrix, accuracy_score
>>> cm = confusion_matrix(y_test, y_pred)
>>> cm
array([[49, 9],
[ 3, 39]], dtype=int64)
>>> accuracy_score(y_test, y_pred) # (50 + 39) / 100 (cm.sum())
0.88
'인공지능 > Machine Learning' 카테고리의 다른 글
[Machine Learning] 분류 예측 Decision Tree (0) | 2024.04.15 |
---|---|
[Machine Learning] 분류 예측 Support Vector Machine (SVM) (0) | 2024.04.15 |
[Machine Learning] 성능 측정 confusion_matrix(), accuracy_score(), classification_report() (1) | 2024.04.15 |
[Machine Learning] 분류 예측 LogisticRegression (0) | 2024.04.15 |
[Machine Learning] LinearRegression 인공지능, 변수 파일로 저장 joblib.dump() (0) | 2024.04.15 |