인공지능/Machine Learning
[Machine Learning] 분류 예측 Support Vector Machine (SVM)
건휘맨
2024. 4. 15. 17:52
SVC(Support Vector Classification)
# 변수에 저장하여 사용
>>> classifier = SVC(kernel='linear')
>>> classifier = SVC(kernel='rbf')
# 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' 호출 가능
# default = 'rbf'
from sklearn.svm import SVC
>>> classifier = SVC() # 디폴트 값 'rbf'
>>> classifier.fit(X_train, y_train)
>>> y_pred = classifier.predict(X_test)
>>> y_pred
array([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0], dtype=int64)
from sklearn.metrics import confusion_matrix, accuracy_score
>>> confusion_matrix(y_test, y_pred)
array([[49, 9],
[ 3, 39]], dtype=int64)
>>> accuracy_score(y_test, y_pred)
0.88